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Non-linear wave propagation in a relaxing gas 

By P. A. BLYTHE 
Department of Aeronautics, Imperial Colleget 

(Received 3 September 1968) 

An outline of the classical far- and near-field solutions for small-amplitude one- 
dimensional unsteady flows in a general inviscid relaxing gas is given. The 
structure of the complete flow field, including a non-linear near-frozen (high 
frequency) region at  the front, is obtained by matching techniques when the 
relaxation time is ‘large’. 

If the energy in the relaxing mode is small compared with the total internal 
energy, the solution in the far field is, in general, more complex than that 
predicted by classical theory. In  this case the rate process is not necessarily able 
to diffuse all convective steepening. An equation valid in this limit is derived 
and discussed. In  particular, a sufficient condition for the flow to be shock-free is 
established. For an impulsively withdrawn piston it is shown that the solution is 
single-valued both within and downstream of the fan. Some useful similarity 
rules are pointed out. 

The corresponding formulation for two-dimensional steady flows is also noted 
in the small energy limit. 

1. Introduction 
It has long been suggested that the far-field behaviour for small-amplitude 

motions in a relaxing gas is governed by Burger’s equation (Lighthill 1956; 
Lick 1965) in which the principal signal is centred on the equilibrium or low- 
frequency characteristics. In  $02 and 3 of this paper a brief review of the classical 
results for small-amplitude non-equilibrium flow is given for a gas with general 
thermodynamic properties. It is assumed that the rate of change of energy in the 
lagging mode depends only on the local values of the pressure, density and 
internal energy. The size and position of the region in which Burger’s equation 
holds is deduced in terms of an amplitude parameter. 

If, however, the relaxation time is much larger than the time scale associated 
with the piston signal, there is also a region in the neighbourhood of the front 
where non-linear convection associated with the high-frequency characteristics 
is important (Varley & Rogers 1967). On the front itself it  is possible to obtain 
an exact solution, over a certain time interval, for the derivatives normal to the 
front (Whitham 1959; Rarity 1967). 

The relation of the classical results to this high-frequency limit is outlined in 
$4. Far behind the front this solution can be matched to the solution of the 
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classical linearized equation discussed in § 2. For still larger times, away from the 
front, the linearized result can be shown to match with Burger’s equation which 
describes the principal asymptotic wave structure. The non-linear near-frozen 
solution is also invalid at  very large times in the neighbourhood of the front, 
where the solution is governed locally by the telegraph equation. 

For the corresponding one-dimensional unsteady flow of a perfect gas it is 
well known that the usual linearized result can be made uniformly valid by 
formally replacing the linearized characteristics by the exact ones (see e.g. 
Lighthill 1955). Clarke (1965) has attempted to apply this technique to the non- 
equilibrium situation but noted that the approach met with certain difficulties. 
Since at large times far from the piston face, and in the equilibrium limit, any 
non-linear convection is associated with the low-frequency characteristics (see 
Q 31, Clarke’s conclusions are not surprising: replacing the linearized charac- 
teristics by the complete (high-frequency) characteristics only corrects for non- 
linear convection associated with these latter wavelets. 

An important feature of these theories is that any discontinuities predicted by 
the front solution are ultimately exponentially weak, and consequently any 
asymptotic steady state can be described as fully dispersed, as opposed to the 
more commonly occurring partly dispersed situation in which the relaxation 
region is preceded by a RankineHugoniot shock (Lighthill 1956). This conclusion 
follows directly from the assumption inherent in the theories that the energy in 
the relaxing mode is comparable with the total internal energy, and hence that 
the difference in the high- and low-frequency sound speeds is not ‘small’. 

If this latter assumption is discarded and both the lagging energy and the 
amplitude are assumed to be small, in some appropriate sense, it can be shown 
(see 5) that the governing equations can be reduced to the form 

( Y W ) $  + Y w  + W$ = 0,  

a a 

(1 .1)  
where 9’. is the non-linear operator 

2T7+w@, 
Y and +b are appropriate independent co-ordinates, and w is proportional to  
the fluid speed. 

It is significant that both the high- and low-frequency convective terms are 
non-linear. In  fact, it is easily shown that the high-frequency behaviour of this 
equation includes the near-frozen Varley-Rogers result and the low-frequency 
behaviour is governed, to a certain order, by Burger’s equation. Moreover, i t  is 
shown in $ 6  that partly dispersed steady-state solutions of (1.1) do exist. 

Apart from these steady-state solutions, analytical solutions of (1.1) are not 
readily found; but the equation possesses several interesting features which 
make it worthy of further study. Certainly (1.1) does not appear to have been 
derived elsewhere in the literature.? 

Obviously this hyperbolic equation can be solved by numerical methods and 
it is of interest to not0 that in certain cases the boundary conditions depend on 

t However, Spence & Ockendon (1968) have recently obtained a similar equation 
independently. 
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only a single parameter (( 1.1) is already written in a form free of parameters). 
Since the analysis is for a general relaxing gas these similarity rules are particu- 
larly appealing. Moreover, for a centred expansion wave, within the fan, the 
problem can be expressed so that it is independent of all parameters. This 
similarity form is discussed in Q 5 and Q 7, and a numerical solution is given in Q 7. 

The situation in which the complete flow field is shock-free, in the unsteady 
case, is of some interest (Rarity 1967). A simple criterion which ensures that the 
solution of (1.1) is unique is given in Q 7 for non-centred waves. 

Some exact numerical solutions of the full equations (Mohammad 1967) for a 
centred expansion wave, produced by impulsively withdrawing a piston in a 
vibrationally relaxing gas, have suggested the existence of shocks on or im- 
mediately downstream of the tail of the fan. It is shown in 0 7 for the non-linear 
small energy limit that the solution is single-valued both within and downstream 
of the fan. 

For simplicity, only one-dimensional unsteady flows are considered in detail 
in the main body of this paper but the results for two-dimensional steady super- 
sonic flow are essentially the same. A brief outline of the appropriate non-linear 
equation in the small energy limit is given in 0 8, and the corresponding similarity 
forms are noted. 

2. The characteristic relations and classical linearized theory 
The governing equations for the one-dimensional unsteady flow of a relaxing 

gas can be written in characteristic form, with respect to a co-ordinate system 
fixed in space, as (Broer 1958) 

Drtu - D a  
D x + p a -  - - cpDt ,  
Dt - Dt 

together with the energy equation 

2- a2-+cp- DP Dcr = 0. 
Dt Dt Dt 

The frozen sound speed a is defined by 

c=- h, and 
php-  1 '  

Here the enthalpy h = h(p ,  p, a),  where G is the energy in the lagging mode. In  
(2.1) and (2.2) D/Dt is the usual convective operator and 

D* a a 
- = -+@+a)-  
Dt at 83' 

where t is the time and x is a suitable space co-ordinate. p,p, anduare the pressure, 
density and velocity respectively. All independent and dependent variables are 
suitably non-dimensionalized (see appendix). 
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The right-hand side of (2.1) is known as a local function ofp, p and u from the 
rate equation 

DulBt = M l p ,  P, 51, (2.6) 

where A is the rate parameter. In  thermodynamic equilibrium (5 = a(p,p))  

F@, p, a) = 0. (2.7) 

It is assumed that the partial derivative Fu exists and is non-zero, so that for 
small deviations from any initial equilibrium state P is linearly dependent on the 
departure from equilibrium. 

The general problem considered here is defined by the class of piston motions 
for which the amplitude of the disturbance is, in some suitable sense, ‘small’, 
though the initial acceleration is finite. (This latter restriction can be removed 
and the solution for an impulsively started piston obtained.) The piston path is 
defined by 

x = 6f(t) (t z O ) ,  ( 2 . 8 ~ )  

where 6 < 1.f- For the finite acceleration case 

If I &ta (t + 0). (2.8b) 

It is assumed throughout this paper that the initial conditions correspond to an 
equilibrium state. 

The linearized equation associated with this and related problems has been 
discussed many times in the literature (see e.g. Clarke & McChesney 1964). This 
equation describes the solution for x, t = O(1) and is easily derived from the 
preceding equations by means of the expansion 

(2.9) 1 u(x, t ;  6)  = 6u1(x, t )  + . . . , 
p(x ,  t ;  6)  = 1 + Sp,(x, t )  + . . ., 
a(z,t; 6)  = 30+6u,(2,t)+..., 

etc. 

first-order perturbation ul:  
Substitution into (Z.l), (2.2) and (2.6) Ieads to the following equation for the 

(2.10) 

where 

is the equilibrium sound speed and E = h(p ,  p, 3) is the equilibrium enthalpy. 
In  addition 

and h = A( - . ~ P , C / C ) ~  (2.13) 

is a modified rate parameter. The suffix 0 denotes evaluation with respect to the 
initial conditions. From (2.8) the appropriate linearized boundary condition is 

u1 = f ‘ ( t )  on x = 0. (2.14) 

a = h.J(pEp - 1) (2.12) 

t The generalization to z = 8f(t; 6) is straightforward. 
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It is convenient to replace (5, t )  by the independent variables (y, t), where 

y = 2x/ao, 6 = t-x/ao; (2.15) 

is the linearized (frozen) characteristic associated with (2.10). In  terms of 
these variables (2.10) becomes identical in form with the equation discussed by 
Clarke (1965), and many of Clarke’s results are directly transferable. A formal 
solution can be obtained by Laplace transforms but the most important result, 
with a view to later application, is the behaviour of the solution for large time 
far from the piston face. This asymptotic behaviour, y + co, is (Clarke 1965; 
Whitham 1959) 

where 

and 

(2.17) 

(2.18) 

is the linearized (equilibrium) characteristic associated with the low-frequency 
(large time) behaviour of (2.10). 

3. The low-frequency solution 
At large time, far from the piston face (i.e. y B l), non-linear convection may 

be important. It is usually assumed that the behaviour in this ‘front’ region is 
described by Burger’s equation (Lighthill 1956; Jones 1964). In  the present 
section the conditions under which this equation does govern the asymptotic 
state are briefly discussed. 

In  deriving Burger’s equation it is convenient to replace u by the departure 
from equilibrium 

and to regard the enthalphy etc. as functions of p ,  p and E .  

The principal signal in this outer region is centred on the equilibrium charac- 
teristic (see (2.16)). If u = O(A(8)) for y 9 1, the only non-trivial scaling of the 
independent variables is 

and the dependent variables have expansions 

(3.1) E = u-3 

X = A2(8)y, Z = A(8)g (3.2) 

I u = A(&)Ul(X,Z)+ ..., 
p = 1+A(8)Pl (X,Z)+ ..., 
E = A2(8)Ez (X ,Z) ,  

(3.3) 

etc. Substitution in the governing equations yields after some simplification 

where (3.5) 

and 

3-2 
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In this derivationof Burger's equation (3.4) it has been assumed that U, = O( 1). 
However, as discussed below, the stretching (3.3) is not permissible for all piston 
paths. 

A(6), the magnitude of the velocity in the far field, is defined implicitly by the 
outer expansion of the inner linearized solution. This expansion (2.16) can be 
written, neglecting terms which are exponentially small, in terms of outer 
variables as 

Here Sg is the piston speed defined in outer variables, i.e. 

f ' is, by definition, at most O( 1) for all time. For decaying motions it is apparent 
that g = o( 1) as 6 + 0,  though g(Z; 6) cannot always be replaced by its asymptotic 
expansion as 6 + 0, since the integrand is then not necessarily well behaved at  the 
origin (which implies that significant contributions to the value of the integral 
may come from this region). In  fact if 

f ' ( t )  N t-" (n 2 0) (3.9) 

as t -+ co, the integral in (3.7) is O(An) for n < 1. Hence A = O(Sl/(l-fi)). 
If n > 1 the corresponding integral (subject to (2.86)) is O(A) and U = 0(6) ,  

which contradicts the original assertion. In  such a case the non-linear terms are 
not important in this region and the linear theory, defined by the diffusion 
equation, remains valid in the far field. A similar conclusion apparently holds in 
general for y > 1 in the low-frequency front region, when the piston displacement 
is bounded. 

In  general, the condition (3.7) is equivalent to the solution of the diffusion 
equation? with a diffusivity &r{a - (l la)) ,  for a source distribution of strength 
per unit length (6/A)g(Z; 6) = G(Z; 8) (3.10) 

along Y = 0, for 0 < Z < 03 (see Whitham 1959). (For the simple case (3.10), 
n < 1, G = z-..) Since the inner behaviour of (3.4) is obviously given by this 
diffusion equation the solution of (3.4) will match with (3.7) if it satisfies the 
boundary condition (3.10) on Y = 0. The appropriate general solution of Burger's 
equation can be found in Lighthill (1956). 

A significant feature of this solution in the far field is its continuous structure. 
Any convective steepening is always diffused by the dissipative nature of the 
relaxation. It follows that, in this region, the behaviour can always be described 
as fully dispersed. 

4. The high-frequency limit 
The low-frequency solution discussed in $ 3  is valid for large time when 

A = O( 1) or greater. If, however, A + 0 non-linear convection is now associated 
with the high-frequency characteristics 

dxldt = u & a. 
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For A e 0, the large time solution is the perfect gas far-field theory (see e.g. 
Lighthill 1955). For A = O(6) there is a non-trivial solution with x = O(S-l), 
which is closely related to a problem discussed recently by Varley & Rogers 
(1967), who considered wave propagation in a visco-elastic material. Varley & 
Rogers used an exact characteristic co-ordinate as one independent variable. 
Here the problem is considered directly in (g, 7) space, where 

(4.1) 
and 6 was defined in (2.15). 

In  this section a further non-uniformity in the high-frequency solution at  the 
front is noted and discussed. It is also apparent that behind the front the low- 
frequency terms must eventually become important. Some comments are made 
regarding the structure of the complete flow field, and the domains of validity of 
the various solutions are outlined. 

7/ = 26x/a, = sy 

Near the front ( E  = O( 1)) the variables are expanded in the form 

(4.2) 

(4.3) 

+,t; 6) = &I,(E,?I)+ ..., 
p(z , t ;  6 )  = l+S?rl(g,q)+..., 

g(z, t ; 6)  = a, + 62C2(E, q) + . . . , 

P,-PPg+kl= 0, 

and substitution in (2.1), (2.2) and (2.6) yields 

where !7 = bq,la,, 

and k: = (.2- qpsr. (4.5) 

Note that, since A = O(S), k: = O(1). 

gas (frozen) result 

and the solution of (4.3) which matches with (4.6) is 

The inner linearized solution when A = O(6) is, to first order, the usual perfect 

(4.6) 

q1 = f’(g5) e-kq. (4.7) 

q1 = f 

g5 is a parameter which is identified with the characteristic surface defined by 

(Z)$  = -!7* (4.8) 

It follows from (4.7) and (4.8) that 

if g5 = Eon? = 0. 
In  contrast to the low-frequency non-linear solution discussed earlier, the high- 

frequency solution does permit discontinuities or shocks. The solution defined 
by (4.7) and (4.9) is not single-valued in the physical (E,q) space at  pointswhere 

E$ = 0 (4.10) 

E = 9 - (b/a,k:)f P - e-k71 (4.9) 
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or 

(see also Varley & Rogers 1967). 
For piston paths such that 

(4.11) 

(4.12) 

the solution is single-valued and, to this order of approximation, remains shock 
free. The results corresponding to (4.11) and (4.12) on the front # = 0,  where 
(4.11) is exact, were pointed out by Rarity (1967). It is apparent that (4.12) will 
always hold, for a given piston path, if k (or A) is sufficiently large. In  such cases 
any convective steepening of the wave-form is again completely balanced by the 
diffusive effects of the rate process. This result is in accord with the low-frequency 
solution (0 3) for A = O(1). 

When the shock forms at  the front and propagates into an undisturbed region 
its path is easily determined. The Rankine-Hugoniot equations, together with 

[a3 = 0, 

lead to the usual relations between the pressure, density and velocity perturba- 
tions. In  addition the shock speed Us is related to q by 

(&/a,)-l = 6q+ .... (4.13) 

Using this result, with (4.7) and (4.9), it  can be shown that the shock path is 
defined parametrically by 

(4.14) 

t = 4 - ?m)/f’(#). J 
These results, in particular, imply that the asymptotic position of the shock 

front is ahead of x = aot by the fixed amount 

(4.15) 

(4.16) 

Note, however, that the shock is exponentially weak in this limit. In  figure 1 
a typical variation of the shock strength is sketched for progressive piston motions 
which are governed initially by (2.8b) but which asymptotically approach a 
constant speed. 

Even apart from any shock formation the near-frozen expansion (4.2) is not 
uniformly valid throughout the front region. In  particular, higher-order terms 
suggest that the non-uniformity, for 4 = O( l), occurs when 7 = O(6-1) where the 
velocity is exponentially small. The formal expansion 

u = eAkQ1(t, 7; 6) + e-2k%?2(5, 7 ; 6) + , . . (4.17) 
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shows that neglecting exponentially smaller terms u satisfies the usual linearized 
equation of 0 2. For the near-frozen limit considered here 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

In  deriving (4.20) the appropriate front conditions have been used and, for 
simplicity, it is assumed in this particular discussion that 1 > b/a,k. 

r ka& = 0.05 

0 6  

0.3 

0.2 

0.1 

0 1 2 3 4 5 

k7 

FIGURE 1. Variation in shock strength in the high-frequency limit. 
The piston path is defined byf = &?/(l +t ) .  

Initial conditions for the solution of the telegraph equation (4.20) are provided 
by matching with the non-linear front solution (4.7) and (4.9). It follows that 

(4.22) 

(4.23) 

(4.24) 

with the usual notation for Bessel functions. 
In  addition to any non-uniformity for 7 large the front solution is also not 

valid as $+m, where the low-frequency terms are again important. When 
7 == O(1) and dJ = 0(&-1), for A = 0(8), it is easily shown that the solution is 
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governed by the linearized equation of $ 2 .  Moreover, (4.9) shows that 6 - q5, 
for g5 large, provided thatf’(g5) is bounded, and thus from (4.7) 

!I - f‘(8 (4.25) 

in this limit. Equation (4.25) can be shown to be compatible with the behaviour 
of the linearized equation at  the front (Clarke 1965). In  fact it follows that, if the 
linearized characteristic variable 6 is replaced by the ‘exact’ variable 4 in the 
linearized solution, the solution is rendered uniformly valid for 31 = O(1). This 
result, which can be regarded as an application of the PLK technique, has some 
bearing on a conjecture made by Clarke (1965) that replacing the linearized 
characteristics by the exact ones, when A = O( l) ,  might give some information 
about the far-field solution, as it does in the classical problem for a perfect gas. 

X E Governing equation 

O(1) O(1) Linearized perfect gas flow 
O(S-1) O(1) Varle y-Rogers 
0 (3-2) O(1) Telegraph 
0 (8-1) O(S-1) Classical linear (2.10) 
O(8-1A;z) 0(~?-~A;l) Burger 

TABLE 1. Solution regimes in the near-frozen limit A = O(S) 

Since, as observed in 0 3, the principal signal for large time is centred around the 
equilibrium characteristics, it is not surprising that Clarke’s approach may break 
down in the far field when A = O(l) ,  though, as outlined above, the approach 
does apply for 7 = O( 1) when A = O(6). Moreover, similarly to the discussion in 
5 3, if the piston displacement is unbounded this linearized solution is not uni- 
formly valid even for A = O(S) and non-linear convection is again important 
when both q5 and 7 are large. More precisely, if u = O(A,(8)) in this region appro- 
priate independent variables are 

A;q = 6A2,(2~/~,) ,  

Al@ = 6Al(t-z/Zo), 
(4.26) 

and the flow is governed, as expected, by Burger’s equation. Al(S) is again (see $ 3) 
defined implicitly by the outer expansion (2.16) of the linearized solution ex- 
pressed in appropriate variables. 

Since any shocks defined by the high-frequency solution are exponentially 
weak for q & 1 there is no contradiction between these latter results, which imply 
that the solution is shock free, and those outlined earlier, provided that exponen- 
tially small terms are neglected. 

The conclusions of this section are summarized in table 1. If A = O(1) the 
classical linearized solution is valid between the body surface and the front; the 
non-linear high-frequency solution then collapses onto the front. 
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5. The small energy far-field equation 
One of the principal features of the analysis outlined in $0 2-4 has been the 

result that either the solution is shock-free or that, if a shock is formed, its 
strength decays exponentially. Thus the wave-form, in some asymptotic sense, 
is always fully dispersed. However, it  is well known that stable partly dispersed 
wave-forms do exist and it is pertinent to discuss this limitation in the preceding 
solutions. 

In each of these solutions it was assumed that the energy CT in the inert mode 
was of the same magnitude as the total internal energy, but that the amplitude 
of the disturbance was small. Since the overall effect of the rate process is to 
diffuse the piston signal it is not surprising, when v = 0(1) but u = 0(6),  that 
any convective steepening can be balanced by the relaxation. Moreover, for 
(T = O( l), the difference in sound speeds a - 7t = O( 1) and it follows, e.g. in the 
steady-state case, that a partly dispersed wave-form can only exist if the piston 
speed is not ‘small’. Obviously a discussion of the case u = O(l) ,  CT = 0(1)  
requires a solution of the full equations (for steady one-dimensional flow see 
e.g. Johannesen 1961) but the case u = 0(6), CT = O(6)t does have some interesting 
features. Since the internal energy in the relaxing mode is now small it can no 
longer beexpected that the rate process will always be able to diffuse all steepening 
of the wave-form. 

In  the small energy limit the inner linearized solution for x ,  t = O( 1) is given, 
as in 0 4, by the perfect gas result 

u = Sj’(E).  (5.1) 

(5.2) 

Appropriate independent variables in the far field are again [ and 7 (see $4). For 
the energy distribution 

Q = 6(E,,e++e,l+ .,.), 

where Bvo = ri,p 
and the e,,, are O( 1). In  addition 

(5.3) 

u = S V , ( E , 7 ) +  ... (5.4) 

and other dependent variables have similar expansions to those outlined in 0 4. 

(5.5) 

Substitution of these expansions into (2.1), (2.2) and (2.6) yields 

P1 = a h  = UOVl 

and v,,-vv6 = - e  ”6’ (5.6) 

evE = kv-he,, (5.7) 

where 
b v = -v l  e, = cob - e  

4 4  yl ’  a0 

and k and h are as defined previously. Note that, since a -  1 = 0(6) ,  k = O(1). 

+ The statement c7 = O(S) should not be taken to imply any relation between the in- 
ternal energy and the piston speed. A second parameter 6, such that u = O(6,) can be 
introduced, and the subsequent analysis holds for terms O(6, Sl), but all product terms, 
etc., are neglected. 
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Equations (5.6) and (5.7) can be combined to give 

(v, - W Z J ~ ) ~  + A(v, - V V ~ )  + kvt = 0. (5.9) 

It is apparent that both the high- and low-frequency factors (5.10) are governed 
by non-linear convective terms. In  the near-frozen limit A + 0 (i.e. A, k -+ 0)  
iterating on (5.9) shows that 

vv--vvt+kv = 0 (5.10) 

to O(A). Equation (5.10) agrees with (4.3), which was derived directly from the 
full equations. The near-equilibrium behaviour A -+ 00 (A,  k -+ 00) can also be 
found by iteration. Including terms O(A-l) (5.9) gives 

It is more appropriate to use the equilibrium variable E ,  and this last result 
becomes Burger’s equation 

V, - V V ~  = ( k/h2) v ~ E .  (5.11) 

Since 

(5.11) agrees with (3.4) when only the dominant terms, with respect to 8, are 
retained. 

Equations (5.10) and (5.11) can also be deduced, for arbitrary A, by means 
of suitable co-ordinate expansions for [ small and for 6 and 7 large respectively. 
This again agrees with the known behaviour of the full equation. 

The linearized form of (5.9), namely 

v,C + Av, + kvt = 0 ,  (5.12) 

is the telegraph equation and has previously been used in discussing non- 
equilibrium flows by Moore & Gibson (1960). Moore & Gibson derived their 
equation from the linearized result (2.12) assuming that the difference in sound 
speeds was small. If their result is to have some validity it is apparent that not 
only must (a- 1)  

8-l(a- 1) 9 1, (5.13) 

otherwise higher-order terms in the expansion outlined in 9 2 may be important. 
It is worth noting that in Moore & Gibson’s formulation z = O ( ( a  - 1)-1). 

Although this linear equation may be of interest, it should be stressed that, 
within the framework of the approximations discussed here, it is not a valid 
approximation when [and 7 are O( 1). It does hold, however, if the supplementary 
restriction (5.13) applies, i.e. a1 9 6 (Spence & Ockendon 1968). 

1 but also 

The parameters h and k can be eliminated from (5.9) by putting 

(5.14) 

and hence (wp - ww*)* + wp - ww* + W$ = 0. (5.15) 
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It is sometimes convenient to study the equation in this form. In  these variables 
the initial condition (5.1) is 

(5.16) 

For geometrically similar bodies (5.15) and (5.16) imply that the solutions in the 
far field are similar for fixed values of the parameters h and b/ka,. Note that this 
result holds without making any detailed specifications about the enthalpy 
h(p ,p ,  a) and the rate function P(p ,p ,  a). Moreover, for power law piston paths 
the solution depends only on a single parameter. 

For impulsive (constant speed) piston motions the solution, outside of any 
centred wave, is governed by the parameter hblka,. Within a centred expansion 
fan the condition at  the origin replacing (5.16) is 

w - -$ /Y  (5.17) 

and the solution is independent of all parameters. This solution is discussed 
further in 5 7. 

6. Steady-state solutions 

arbitrary piston motions, solutions of steady-state form 
Although general solutions of (5.15) are not readily found analytically for 

(6.1) 

can be deduced. These solutions represent the asymptotic state due to a piston 
moving at constant speed. The wave speed associated with (6.1) is, in ( q t )  space, 

(6.2) 
correct to O(6).  

w = w($+CY) = w(r)  

u, = a,[l+ 6(2kC/h)] M a,[l + (a - 1) C] 

Substitution into (5.9) gives either 

R = O  
or 
where 

(d/dW){(l-W)Q} = W - A ,  
w = c-lw, R = C-1wt 

From (6.4) it follows that in general 

I W 2 - A W  K 
Q=2- +- 

1 - w  1 - w  

and, since R = W = 0 at  upstream infinity, apparently 

K = 0. 

However, the corresponding solution from (6.7) is unique only if 

A < *, 

wp = cw, = 2(C+ 1). 

and the piston speed is given by 
(6.9) 

(6.10) 
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This latter result also follows from conservation arguments, assuming that 
equilibrium is achieved on the piston face. 

For compression waves, wp > 0, (6.9) and (6.10) imply that 

o > c >  -1 .  

Consequently, from (6.2), a, > u, > a,, 
(6.11) 

(6.12) 

which is the usual condition for a fully dispersed wave (Lighthill 1956). 
Equation (6.7), with K = 0, also appears to provide a valid solution for ex- 

pansion waves, wp < 0, when (6.9) holds. However, it is easily shown that the 
overall entropy change between the limiting upstream and downstream equili- 
brium states is 

(6.13) 

where T is the (non-dimensional) translational temperature (see Hayes 1958). 
Since the coefficient of wi is always positive it follows that only the fully dis- 
persed compression wave solutions are admissible. 

If A > 8, equation (6.7) ( K  = 0) does not represent a single-valued solution. 
For compression waves it is necessary to insert a Rankine-Hugoniot shock at  the 
wave front. Immediately behind the shock, across which [a] = 0, 

w = 2  (6.14) 

(see (4.13) and (6.2)). In  addition, from (5.6) and (5.7) with [a] = 0, 

Q = 2/c (6.15) 

behind the shock front. The solution upstream of the shock is now defined by (6.3). 
Behind the shock the general solution is of the form (6.7) but (6.14) and (6.15) 
again imply that K = 0. As before, the piston speed is given by (6.10). 

Note that (6.7), with K = 0, can be integrated to give 

A - 1  2 8 - 1  2 
Ar = log((------) A - $ W  w). (6.16) 

For expansion waves, with A > 8, the asymptotic disturbance will be the 

(6.17) 

eauilibrium centred wave 

which precedes any steady-state region governed by (6.7). Equation (6.17) is an 
exact solution of (5.15). Consequently on the tail of the fan, from (6.17) and (6.1), 

W = A .  (6.18) 

Further, it can be shown (see e.g. Jones 1964) that R is exponentially small on 
the tail. Therefore from (6.7) K = +A2, (6.19) 

and hence from (6.7) W = A ,  Q = O .  (6.20) 

Thus, as expected, the appropriate solution downstream of the fan is a region 
of constant state. 
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7. Characteristic co-ordinates and shocks 
(a)  Non-centred waves 

The characteristics of the non-linear equation (5.15) are defined by Y = constant 
and = constant where (g)o = -w. (7.1) 

For a piston which starts from rest with a finite acceleration, @ can be identified 
with $ on Y = 0, or 

When @ and Yare used as independent variables and $ as the dependent variable, 

$ = a- u:(a,s)ds. (7.2) f OY 
(7.3) (5.15) becomes 

h Y P  + $ul$YP + = 07 

subject to the front condition 

and the initial conditions 
$(O, Y) = 0 

If the solution is regular in the characteristic plane and is known up to some 
line @ = @,, on which '$ = $,( Y ) ,  it can be extended across the line (i.e. 
normal derivatives can be found) by means of the formal expansion 

$ = 2 (@-@o)n$n(y)9 
n=O 

where, in particular, $l satisfies 

with 

where 

It is also useful to  note the relations 

(7.10) 

The most direct application of this approach is at  the front Q0 = 0, It is easily 
shown that the expansion yields the usual results there (Rarity 1967) and, if 
f'(q5) is replaced by g5, is consistent with the behaviour discussed in 5 4. In  Q 4 
it was noted that the near-frozen expansion is not uniformly valid as Y + 00. A 
similar remark is true, in the usual asymptotic sense, for the co-ordinate expansion 
(7.6) near the front; convergence is governed by the magnitude of the product @ Y. 

The solution of (7.3) is unique in the physical ($, Y )  space only if the Jacobian 
of the transformation does not vanish, i.e. 

$@ * 0 
$1 ' 0. or, from (7.6) and (7.8), 

(7.11) 

(7.12) 

At the front this condition is equivalent to (4.12) and, when (7.12) does hold 
there, it  is of interest to discuss constraints on the piston motion for which the 
remainder of the flow will be shock-fiee. As a fairly general example suppose 
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that the piston accelerates smoothly to some constant speed. In  this case both 
lo and 1; are positive and bounded. 

It is apparent from (7.2) that if wcp < 0, (7.11) is certainly true. Since wcp > 0 
in the neighbourhood of the front (I, > 0) it is sufficient to consider only this 
possibility. Prom (5.6), (5.7) and (5.14) it can be shown that 

(7.13) 

and hence, for wa > 0, wp < 0. Moreover, since w > 0 sufficiently near to the 
front it follows that w > 0 throughout the region of interest. Consequently, on 
CD = CDo within this domain, $; < 0 and & > 0. 

Equation (7.6), together with the boundary conditions (7.8), can be replaced 

where 
and 

L( Y )  = 1 -1;(1 -e-P) 

K(s ,  Y )  = fi(s) [l -e-(P-s)]. 

(7.14) 

(7.15) 
(7.16) 

There is obviously a finite interval in Y for which 
this interval. Since the kernel is non-negative (and I, > 0)  

> 0. Let Y = Y* lie within 

1 > Y*) > L( Y*)  - &(s) ds = A( Y*) - $;( Y*) - I o  l o Y *  
and will certainly remain positive for all Y if 

1 > l o + &  (7.17) 

This simple result agrees with (4.12) on the front, but it should be stressed that 
it is a sufficient rather than a necessary condition. The necessary and sufficient 
condition (7.12) can be replaced by a formal solution of the integral equation 
(7.14) though the result does not appear to be particularly useful unless $, is 
known analytically. 

It is also fairly straightforward to argue conversely and show that shocks will 

certainly form if 1; > 1, (7.18) 

which is identical with the result of 0 4 for the front. 

(b )  Centred waves 
In  this case (7.2) is replaced by 

$ = -fYw(B,s)ds 0 (7.19) 

and, for convenience, CD is defined by the slope at the origin $ = Y = 0. Hence 

w(@, 0)  = -a). (7.20) 

Within the fan (7.7) again holds, though the initial conditions (7.8) are replaced by 

41(0) = 0, $ X O )  = 1, 

$&(O) = a,, fi(0) = - a+). 
and it is useful to note that 

(7.21) 

(7.22) 

Some recent calculations (see Mohammad 1967) have suggested the existence 



Non-linear wave propagation in a relaxing gas 47 

of shocks a t  the tail of non-equilibrium centred expansion waves. Although their 
occurrence was confined essentially to large-amplitude waves it is of interest to 
discuss the possibility of shock formation both within and downstream of the 
fan in the present limit. Shocks will again occur where, apart from the origin, 

Within the fan it is easily shown, both in the neighbourhood of the front and 
near the corner, that wQ < 0 and hence, from (7.19), that $@ > 0 ( Y  > 0). In  fact, 
if it  can be established that wq, remains negative, the solution in the interior of 
the fan is unique. Moreover, in such a domain w p  > 0 (see (7.13)). 

Suppose @ = @* is the fbt value of @ at which w@ = 0, and Y = Y* is the 
corresponding value of Y ,  then, on @ = @*, $: < 0 ( Y  < Y*),  $;( Y*) = 0 and 
(7.6) implies that sgn {Pa Y*)> = sgn {$l( Y*)>. (7.23) 

However, the boundary conditions (7.21) imply that Y* corresponds to a maxi- 
mum at which $-1 > 0. This result is not consistent with (7.23) and hence the 
original supposition is incorrect. Thus wa < 0 and the solution is unique. One 
consequence of this result is that the energy does not overshoot its equilibrium 
value. 

Downstream of the fan Q, 2 Qt, where the subscript t denotes the tail of the 
fan, $( @, Y )  is defined by 

@ = @-a)'- W ( @ , S ) d S .  (7.24) 

If the expansion (7.6) is applied in this region, $l obviously satisfies (7.7) but the 
initial conditions become (constant piston speed) 

@l(O) = 1, Ilri(0) = 0. (7.25) 

The solutionwithin the fanimplies that 11.1' < 0. Therefore, from (7.7) and (7.25), 
1cI.;(O) > 0 and = 0 can be attained only if @l passes through a maximum. It is 
easily shown that this leads to a contradiction. 

It follows that in the neighbourhood of the tail there is a region in which 
wq, < 0. A similar inequality can also be established sufficiently close to the piston 
face. A repetition of the argument used within the fan shows that the solution 
is single-valued downstream of the fan in the ($, Y )  plane. (From (7.24), if 

(c) Numerical example 
Conditions under which the solution was regular, or otherwise, in physical space 
were established in Q7(a) and (b )  under the assumption that the solution was 
regular in the characteristics plane. To compute the solution in the (@, Y )  plane 
it is convenient to replace (7.3) by the original three first-order relations 

$@ = 0. 

!oY 

wQ O ,  $0 > O.1 

(7.26) 

(7.27) 

(7.28) 

where e, = (k2/A2) E. (7.29) 
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It is apparent, subject to the boundary conditions on w, E and $outlined earlier, 
that these relations can be used to find appropriate derivatives and the solution 
extended into the domain CD > 0, Y > 0. 
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FIGURE 2. Solution within the fan for a centred wave. 
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FIGURE 3. Comparison with exact numerical calculations (Johannesen 1968) for the 
velocity variation along a characteristic line. -, approximate theory; 0, Johannesen. 

A suitable finite-difference scheme has been used to  obtain the solution for 
a centred expansion wave. The solution in the ($, Y )  plane is easily found from 
the characteristics plane solution (it was proved in 0 7 (b )  that the former solution 
is single-valued), and the results are displayed in figure 2. 
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It was noted in Q 5 that in terms of these variables the solution is independent 
of the parameters. Unfortunately, available calculations were not sufficiently 
detailed to test this similarity rule but a comparison with an exact calculation 
for a vibrationally relaxing gas is shown in figure 3 (Johannesen 1968). 

8. Steady two-dimensional flow 
If the variables are suitably re-interpreted many of the previously derived 

results apply equally well to steady two-dimensional supersonict flow past thin 
bodies. The appropriate formulation in the small energy far-field limit is given 
below. 

In  deriving the governing equations it is simpIest to use streamline co-ordinates 
and to express the equations in the corresponding characteristic form (see Q 2). 
By stretching the (non-dimensional) dependent and independent variables in 
a way similar to that outlined in $ 5 ,  it is easy to show that the usual relationships 

hold, where (ul, vl) are the perturbation velocity components in a Cartesian 
co-ordinate system (2,y). The chord line of the body is identified with y = 0. 
U, is the free-stream speed, which is directed along the x-axis, and M, is the free- 
stream Mach number. It can also be shown that the velocity and energy per- 
turbations, v and e, respectively, again satisfy (5.6) and (5.7) with A and k 
replaced by A* and k*, where 

p1 = a;pl = - UOU, = U,(M; - I ) - &  ~1 (8.1) 

- 
u2- 1 k* = -A*. 
46a2 

A* = A/U,, 

and (8.4) 

The body shape is defined by y = Sf(.) (8.5) 

w1 = U,f’([)  on 7 = 0. (8.6) 

and the appropriate matching condition is 

These transformations establish the detailed correspondence between the un- 
steady and steady flows considered here. In  addition, by putting 

the equations can again be combined to yield (5.15) with 

The similarity laws discussed in Q 5 also apply here and (8.8) specifies the appro- 
priate similarity parameters. In  particular, the solution obtained in § 7 (c )  also 
governs the non-equilibrium supersonic flow round a sharp corner, where W, @ 
and Y are now to be interpreted according to (8.3), (8.4) and (8.7). 

t With respect to  the frozen sound speed. 
4 Fluid Mech. 37 
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Appendix 
If d' is some representative length, the independent variables are non- 

dimensionalized by writing 
XI & ?  

x = a i )  t = (jP;) ,j,) 

where primes denote dimensional quantities. 
The dependent variables are normalized by putting 

and 
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